9 resultados para weight gain

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weight gain is often associated with smoking cessation and may discourage smokers from quitting. This study estimated the weight gained one year after smoking cessation and examined the risk factors associated with weight gain in order to identify socio-demographic groups at higher risk of increased weight after quitting. We analyzed data from 750 adults in two randomized controlled studies that included smokers motivated to quit and found a gradient in weight gain according to the actual duration of abstinence during follow-up. Subjects who were abstinent for at least 40 weeks gained 4.6 kg (SD = 3.8) on average, compared to 1.2 kg (SD = 2.6) for those who were abstinent less than 20 weeks during the 1-year follow-up. Considering the duration of abstinence as an exposure variable, we found an age effect and a significant interaction between sex and the amount of smoking before quitting: younger subjects gained more weight than older subjects; among light smokers, men gained more weight on average than women one year after quitting, while the opposite was observed among heavy smokers. Young women smoking heavily at baseline had the highest risk of weight gain after quitting.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the last two decades, several genes have been identified that appear to play a role in the regulation of energy homeostasis and body weight. For a small subset of them, a reduction or an absence of expression confers a resistance to the development of obesity. Recently, a knockin mouse for a member of the monocarboxylate transporter (MCT) family, MCT1, was demonstrated to exhibit a typical phenotype of resistance to diet-induced obesity and a protection from its associated metabolic perturbations. Such findings point out at MCTs as putatively new therapeutic targets in the context of obesity. Here, we will review what is known about MCTs and their possible metabolic roles in different organs and tissues. Based on the description of the phenotype of the MCT1 knockin mouse, we will also provide some insights about their putative roles in weight gain regulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: The study tests the hypothesis that a low daily fat intake may induce a negative fat balance and impair catch-up growth in stunted children between 3 and 9y of age. DESIGN: Randomized case-control study. SETTING: Three rural villages of the West Kiang District, The Gambia. SUBJECTS: Three groups of 30 stunted but not wasted children (height for age z-score < or = -2.0, weight for height z-score > or = -2.0) 3-9 y of age were selected by anthropometric survey. Groups were matched for age, sex, village, degree of stunting and season. INTERVENTION: Two groups were randomly assigned to be supplemented five days a week for one year with either a high fat (n = 29) or a high carbohydrate biscuit (n = 30) each containing approximately 1600 kJ. The third group was a non supplemented control group (n = 29). Growth, nutritional status, dietary intake, resting energy expenditure and morbidity were compared. RESULTS: Neither the high fat nor the high carbohydrate supplement had an effect on weight or height gain. The high fat supplement did slightly increase adipose tissue mass. There was no effect of supplementation on resting energy expenditure or morbidity. In addition, the annual growth rate was not associated with a morbidity score. CONCLUSIONS: Results show that neither a high fat nor a high carbohydrate supplement given during 12 months to stunted Gambian children induced catch-up growth. The authors suggest that an adverse effect of the environment on catch-up growth persists despite the nutritional interventions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy balance is the difference between metabolizable energy intake and total energy expenditure. Energy intake is difficult to measure accurately; changes in body weight, for example, are not a good measure of the adequacy of energy intake, because fluctuations in body weight are common even if the overall trend is toward weight loss. It is now customary to assess energy requirements indirectly from total energy expenditure. Total energy expenditure consists of basal metabolism, postprandial thermogenesis, and physical activity. Energy expenditure is related to both body weight and body composition. A reduction in total energy expenditure accompanies weight loss, because basal metabolic rate decreases with the loss of lean tissue mass. Similarly, with weight gain, there is an increase in basal metabolic rate, because lean tissue mass grows to support the increase in fat tissue mass. Excess energy intake over energy expenditure causes weight gain and an accompanying increase in total energy expenditure. Following a period of adaptation, total energy expenditure will match energy intake and body weight will stabilize at a higher level. This same relationship holds for weight loss. Respiratory quotient (measured in steady state) is an indication of the proportion of energy expenditure derived from fat and carbohydrate oxidation. Over long periods of time, fat balance is equivalent to energy balance, as an excess of fat intake over fat oxidation causes fat storage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic disorders, such as obesity, diabetes, inflammation, non-alcoholic fatty liver disease and atherosclerosis, are related to alterations in lipid and glucose metabolism, in which peroxisome proliferator-activated receptors (PPAR)α, PPARβ/δ and PPARγ are involved. These receptors form a subgroup of ligand-activated transcription factors that belong to the nuclear hormone receptor family. This review discusses a selection of novel PPAR functions identified during the last few years. The PPARs regulate processes that are essential for the maintenance of pregnancy and embryonic development. Newly found hepatic functions of PPARα are the mediation of female-specific gene repression and the protection of the liver from oestrogen induced toxicity. PPARα also controls lipid catabolism and is the target of hypolipidaemic drugs, whereas PPARγ controls adipocyte differentiation and regulates lipid storage; it is the target for the insulin sensitising thiazolidinediones used to treat type 2 diabetes. Activation of PPARβ/δ increases lipid catabolism in skeletal muscle, the heart and adipose tissue. In addition, PPARβ/δ ligands prevent weight gain and suppress macrophage derived inflammation. In fact, therapeutic benefits of PPAR ligands have been confirmed in inflammatory and autoimmune diseases, such as encephalomyelitis and inflammatory bowel disease. Furthermore, PPARs promote skin wound repair. PPARα favours skin healing during the inflammatory phase that follows injury, whilst PPARβ/δ enhances keratinocyte survival and migration. Due to their collective functions in skin, PPARs represent a major research target for our understanding of many skin diseases. Taken altogether, these functions suggest that PPARs serve as physiological sensors in different stress situations and remain valuable targets for innovative therapies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor gamma (PPARgamma) plays a major role in fat tissue development and physiology. Mutations in the gene encoding this receptor have been associated to disorders in lipid metabolism. A thorough investigation of mice in which one PPARgamma allele has been mutated reveals that male PPARgamma heterozygous (PPARgamma +/-) mice exhibit a reduced body size associated with decreased body weight, reflecting lean mass reduction. This phenotype is reproduced when treating the mice with a PPARgamma- specific antagonist. Monosodium glutamate treatment, which induces weight gain and alters body growth in wild-type mice, further aggravates the growth defect of PPARgamma +/- mice. The levels of circulating GH and that of its downstream effector, IGF-I, are not altered in mutant mice. However, the IGF-I mRNA level is decreased in white adipose tissue (WAT) of PPARgamma +/- mice and is not changed by acute administration of recombinant human GH, suggesting an altered GH action in the mutant animals. Importantly, expression of the gene encoding the suppressor of cytokine signaling-2, which is an essential negative regulator of GH signaling, is strongly increased in the WAT of PPARgamma +/- mice. Although the relationship between the altered GH signaling in WAT and reduced body size remains unclear, our results suggest a novel role of PPARgamma in GH signaling, which might contribute to the metabolic disorder affecting insulin signaling in PPARgamma mutant mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor gamma (PPAR-gamma) plays a key role in adipocyte differentiation and insulin sensitivity. Its synthetic ligands, the thiazolidinediones (TZD), are used as insulin sensitizers in the treatment of type 2 diabetes. These compounds induce both adipocyte differentiation in cell culture models and promote weight gain in rodents and humans. Here, we report on the identification of a new synthetic PPARgamma antagonist, the phosphonophosphate SR-202, which inhibits both TZD-stimulated recruitment of the coactivator steroid receptor coactivator-1 and TZD-induced transcriptional activity of the receptor. In cell culture, SR-202 efficiently antagonizes hormone- and TZD-induced adipocyte differentiation. In vivo, decreasing PPARgamma activity, either by treatment with SR-202 or by invalidation of one allele of the PPARgamma gene, leads to a reduction of both high fat diet-induced adipocyte hypertrophy and insulin resistance. These effects are accompanied by a smaller size of the adipocytes and a reduction of TNFalpha and leptin secretion. Treatment with SR-202 also dramatically improves insulin sensitivity in the diabetic ob/ob mice. Thus, although we cannot exclude that its actions involve additional signaling mechanisms, SR-202 represents a new selective PPARgamma antagonist that is effective both in vitro and in vivo. Because it yields both antiobesity and antidiabetic effects, SR-202 may be a lead for new compounds to be used in the treatment of obesity and type 2 diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Weight gain is a major health problem among psychiatric populations. It implicates several receptors and hormones involved in energy balance and metabolism. Phosphoenolpyruvate carboxykinase 1 is a rate-controlling enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis and has been related to obesity and diabetes phenotypes in animals and humans. The aim of this study was to investigate the association of phosphoenolpyruvate carboxykinase 1 polymorphisms with metabolic traits in psychiatric patients treated with psychotropic drugs inducing weight gain and in general population samples. One polymorphism (rs11552145G > A) significantly associated with body mass index in the psychiatric discovery sample (n = 478) was replicated in 2 other psychiatric samples (n1 = 168, n2 = 188), with AA-genotype carriers having lower body mass index as compared to G-allele carriers. Stronger associations were found among women younger than 45 years carrying AA-genotype as compared to G-allele carriers (-2.25 kg/m, n = 151, P = 0.009) and in the discovery sample (-2.20 kg/m, n = 423, P = 0.0004). In the discovery sample for which metabolic parameters were available, AA-genotype showed lower waist circumference (-6.86 cm, P = 0.008) and triglycerides levels (-5.58 mg/100 mL, P < 0.002) when compared to G-allele carriers. Finally, waist-to-hip ratio was associated with rs6070157 (proxy of rs11552145, r = 0.99) in a population-based sample (N = 123,865, P = 0.022). Our results suggest an association of rs11552145G > A polymorphism with metabolic-related traits, especially in psychiatric populations and in women younger than 45 years.